Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Mustafa Odabaşoğlu^a* and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ^bDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

All rights reserved

Single-crystal X-ray study T = 296 K Mean σ (C–C) = 0.002 Å R factor = 0.032 wR factor = 0.089 Data-to-parameter ratio = 10.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2,6-diaminopyridinium) oxalate dihydrate

In the title compound, $2C_5H_8N_3^+ \cdot C_2O_2^{-2-} \cdot 2H_2O$, the 2,6diaminopyridinium ions are linked to centrosymmetric oxalate ions and water molecules through N-H···O and O-H···O hydrogen bonds, generating edge-fused $[R_2^1(6)R_1^2(5)R_2^2(9) R_4^2(8)R_6^6(17)$] motifs.

Comment

We have been interested in hydrogen-bonding systems formed by organic amines and carboxylic acids (Büyükgüngör & Odabaşoğlu, 2002, 2003, 2006a, 2006b; Odabaşoğlu, Büyükgüngör & Lönnecke, 2003; Odabaşoğlu, Büyükgüngör, Turgut et al., 2003; Odabaşoğlu & Büyükgüngör, 2006a,b). The present work is part of a structural study of compounds of organic ammonium systems with hydrogen-bond donors and we report here the structure of the title compound, (I).

In (I), the oxalate ion is centrosymmetric (Fig. 1). 2,6-Diaminopyridinium ions are linked to the oxalate ions and water molecules through $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds (Table 1), forming edge-fused $[R_2^1(6)R_2^2(9)R_1^2(5)]$ motifs

scheme. Displacement ellipsoids are drawn at the 30% probability level. © 2006 International Union of Crystallography The dashed line indicates a hydrogen bond. [Symmetry code: (i) 1 - x, 1 - y, 2 - z.]

Received 15 August 2006 Accepted 15 September 2006 (Fig. 2). These motifs are connected by four $N-H \cdots O$ hydrogen bonds, generating $R_{\ell}^{6}(17)$ rings, and water molecules, generating $R_4^2(8)$ hydrogen-bonded rings. The pyridinium rings of the cations are stacked along the c axis, and show $\pi - \pi$ interactions, the centroid-to-centroid distance being 3.540 (1) Å.

Experimental

The title compound was prepared as described by Büyükgüngör & Odabaşoğlu (2006b), using 2,6-diaminopyridine and oxalic acid as starting materials. Equimolar quantities of 2,6-diaminopyridine and oxalic acid were separately dissolved in methanol-water (1:1). The solutions were mixed at 323-333 K and the mixture was left to stand at room temperature, giving crystals suitable for X-ray diffraction by slow evaporation (m.p. 488-490 K, yield 98%).

Z = 2

 $D_x = 1.444 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Prism, light yellow

 $0.65 \times 0.44 \times 0.28 \text{ mm}$

11192 measured reflections

1551 independent reflections

1401 reflections with $I > 2\sigma(I)$

 $\mu = 0.12 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.047$

 $\theta_{\rm max} = 26.0^{\circ}$

Crystal data

 $2C_5H_8N_3^+ \cdot C_2O_4^{2-1} \cdot 2H_2O$ $M_r = 344.34$ Monoclinic, $P2_1/c$ a = 8.0068 (6) Å b = 15.4788 (8) Å c = 7.0250 (5) Å $\beta = 114.531 \ (6)^{\circ}$ $V = 792.06 (9) \text{ Å}^3$

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.936, T_{\max} = 0.971$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0479P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 0.1298P]
$wR(F^2) = 0.089$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
1551 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
150 parameters	$\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$
All H-atom parameters refined	Extinction correction: SHELXL97
	Extinction coefficient: 0.034 (5)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O2^i$	0.882 (15)	1.911 (15)	2.7611 (13)	161.2 (13)
$N2-H2A\cdots O2^{i}$	0.89 (2)	2.23 (2)	3.0037 (17)	145.2 (16)
$N2-H2B\cdots O1^{ii}$	0.869 (19)	2.079 (19)	2.9445 (15)	174.0 (16)
$N3-H3A\cdotsO1^{iii}$	0.871 (16)	2.062 (17)	2.9322 (15)	176.7 (14)
$N3-H3B\cdots O3^{iv}$	0.877 (17)	2.065 (17)	2.9365 (16)	172.3 (15)
$O3-H3C \cdot \cdot \cdot O1^{iii}$	0.85 (3)	2.47 (3)	3.1418 (16)	136 (2)
$O3-H3C \cdot \cdot \cdot O2^{i}$	0.85(3)	2.34 (2)	3.1176 (16)	152 (2)
O3−H3 <i>D</i> ···O2	0.88 (2)	1.98 (2)	2.8493 (15)	168.9 (19)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z - 1; (iii) x, y, z - 1; (iv) $x, -y + \frac{3}{2}, z - \frac{1}{2}$

Part of the crystal structure of (I), showing the formation of $R_2^1(6)R_1^2(5)R_2^2(9)$ motifs. Dashed lines indicate hydrogen bonds. [Symmetry code: (ii) 1 - x, 1 - y, 1 - z.]

All H atoms were located in difference maps and refined freely with an isotropic displacement parameters. The C-H, N-H and O-H bond lengths are 0.95 (2)-0.98 (2), 0.87 (2)-0.89 (2) and 0.85 (3)-0.88 (2) Å, respectively.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Büyükgüngör, O. & Odabaşoğlu, M. (2002). Acta Cryst. C58, o691-o692.

- Büyükgüngör, O. & Odabaşoğlu, M. (2003). Acta Cryst. C59, o105-o106.
- Büyükgüngör, O. & Odabaşoğlu, M. (2006a). Acta Cryst. E62, o2749-o2750.
- Büyükgüngör, O. & Odabasoğlu, M. (2006b). Acta Cryst. E62, o3816-o3818. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Odabasoğlu, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o739-o741.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o1524-o1525.
- Odabaşoğlu, M., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, 051-052.
- Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karadağ, A., Bulak, E. & Lönnecke, P. (2003). J. Mol. Struct. 648, 133-138.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.